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SUMMARY

In this paper, we propose a new lattice Boltzmann model for the compressible Navier–Stokes equations.
The new model is based on a three-energy-level and three-speed lattice Boltzmann equation by using a
method of higher moments of the equilibrium distribution functions. As the 25-bit model, we obtained the
equilibrium distribution functions and the compressible Navier–Stokes equations with the second accuracy
of the truncation errors. The numerical examples show that the model can be used to simulate the shock
waves, contact discontinuities and supersonic flows around circular cylinder. The numerical results are
compared with those obtained by traditional method. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Recently, the lattice Boltzmann method (LBM) has been developed as an alternative method for
computational fluid dynamics (CFD). This method originated from a Boolean fluid model known
as the lattice gas automata (LGA) [1, 2] which simulates the motion of the fluids by particles
moving and colliding on a regular lattice. During the past few years much progress has been made
that extend the LBM to become a tool for simulating many complex fluid dynamics problems,
such as multi-phase flow, suspension flow and flow in the porous media, which are quite difficult
to simulate by conventional method. All of LBMs approach computation; the famous lattice
Bhatnagar–Gross–Krook (LBGK) scheme is simple and the most recent application to attract
interest [2].
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Unlike conventional methods based on macroscopic continuum equation, the LBGK starts from
mesoscopic kinetic equations, i.e. the Boltzmann equation, to determine the macroscopic fluid
flows. The kinetic nature offers certain advantages over conventional numerical methods, such as
their algorithmic simplicity, parallel computation, easy handling of complex boundary conditions
and efficient hydrodynamics simulations [3–5]. A recent study by Yan et al. showed that the
LBGK model could be used to simulate wave motion [6], soliton wave [7], and Lorenz attractor
[8]; all these models can be derived by using higher-order moment method with multi-scale
technique. Now, we focus on the compressible Navier–Stokes equation and propose a new model
with higher-order moment method for simulating wave and contact discontinuity.

There are many significant refined finite-difference methods for the compressible flows in history
[9–14]. For example, the finite volume method with unstructured meshes is to fit complex bound-
aries [9]; the total variation diminishing (TVD) [10]; the essentially non-oscillatory (ENO) [11]
methods are to minimize numerical diffusions and non-physical oscillatory effects; the meshless
method can avoid the restriction of grid meshes [12]. The level set method can be used to trace
the moving boundaries [13]. When these schemes are applied to a shock wave tube problem, they
produce a very high resolution for the shock, especially in TVD-type schemes. However, the con-
tact discontinuity is still spread over typically three to four grid cells. For Eulerian finite-difference
method, contact discontinuities are more difficult to compute with high resolution than in the case
of shock since they do not have a natural compression mechanism to help their sharp numerical
resolution. The LBM can offer an ideal numerical effect and a new insight [15].

It is known that the LBM is limited to the low Mach flows [15], although several related
compressible techniques have been proposed. In order to remove the low Mach restriction, in
recent years, a series of LBM for the compressible flows has been proposed [16–30]. Alexander
et al. [16] chose a modified equilibrium distribution, allowing the sound speed to be small. Nadiga
[17] proposed a discrete velocity model. Huang et al. [18] used flow-adapted discrete velocities, a
non-unique equilibrium distribution constrained by a set of linear moments and the used interpolated
nodes. Prendergast and Xu [19], Kim et al. [20] and Koltelnikov and Montgomery used Bhatnagar–
Gross–Krook-type models [21] to establish new type flux and employed TVD flux limitation with
the neighbourhood cells. Renda et al. [22], Vahala et al. [23], Sun [24], De Cicco et al. [25],
Mason [26, 27], Yan [15, 28], and Kataoka and Tsutahara [29, 30] proposed many models by using
additional techniques to achieve higher Mach number for the compressible flows.

The earlier LBMs encounter two difficulties which need to be solved: (1) the accuracy of these
models is first-order system; (2) the equilibrium distribution functions, the higher moments are not
unknown. In his paper, to overcome these problems, we propose a new two-dimensional model. In
comparison with the earlier LBM, the third moment Pi jk and moment Ri j have been added to fit
the macroscopic equations, say, the compressible Navier–Stokes equations with the second-order
model. Therefore, we would obtain the equilibrium distribution functions. One-dimensional model
may not be a suitable one for simulating one-dimensional compressible flows, because there is
no correspondence between the first-order one-dimensional model and the compressible flows.
Therefore, we focus our attention on the two-dimensional model. Our goal is to build a lattice
Boltzmann model with the second-order model for the compressible Navier–Stokes equations.

The new model is based on a three-energy-level and three-speed lattice Boltzmann equation
by using a method of higher moments of the equilibrium distribution functions [6]. As the 25-bit
model, we obtained the equilibrium distribution functions and the compressible Navier–Stokes
equations with the second-order accuracy of the truncation errors. The numerical examples show
that the model can be used to simulate the shock waves, contact discontinuities and supersonic flows
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around circular cylinder. The numerical results are compared with those obtained by traditional
method.

In the next section, the second-order LBM is described. In Section 3, we simulate two nu-
merical examples with shock waves and contact discontinuities, and Section 4 gives concluding
remarks.

2. LATTICE BOLTZMANN MODEL

2.1. Lattice Boltzmann equation

We consider a two-layer hexagon lattice with 12 links that connect the centre site to 12 neighbour
nodes. We assume that the particles moving along the link with velocity e� are divided into two
kinds, A and B, with different energy levels �A (�= 1, . . . , 12) and �B (� = 13, . . . , 24), and the
rest particles (� = 0) possess energy level �D . So it is actually a 25-bit model with three speeds
0, c and 2c, where c is the speed of particles at the face centres: |e�| = c (� = 1, . . . , 6 and
� = 13, . . . , 18), |e�| = 2c (�= 7, . . . , 12 and � = 19, . . . , 24) and |e0| = 0, see Figure 1.

We define f�(x, t) as the distribution function at site x and time t , with velocity e�. The
macroscopic quantity mass, momentum and total energy per site are defined as follows:

� = ∑
�

f� (1)

�u j = ∑
�
e� j f� (2)

1

2
�u2 + �E = ∑

�
f��� (3)

in Equation (3), E is the internal energy per unit mass. The �� is the energy level [15], it has only
three numerical values, �A, �B , and �D . The lattice Boltzmann equations are expressed as

f�(x + e�, t + 1)= f�(x, t) − 1

�
( f�(x, t) − f eq� (x, t)) (4)

Figure 1. Schematic diagram of lattice: (a) type A and (b) type B.
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where � is the single-relaxation time, f eq� (x, t) is the local equilibrium distribution function at site
x and time t , with velocity e�. We assume that f eq� has the following form:

f eq� = A′
0� + A′

2�u j e� j + A′
5�uiu j e�i e� j + A′

6�u
2 + A′

7�uiu juke�i e� j e�k

(� = 1, . . . , 6), �� = �A

f eq� = A′′
0� + A′′

2�u j e� j + A′′
5�uiu j e�i e� j + A′′

6�u
2 + A′′

7�uiu juke�i e� j e�k

(�= 7, . . . , 12), �� = �A

f eq� = B ′
0� + B ′

2�u j e� j + B ′
5�uiu j e�i e� j + B ′

6�u
2 + B ′

7�uiu juke�i e� j e�k

(� = 13, . . . , 18), �� = �B

f eq� = B ′′
0� + B ′′

2�u j e� j + B ′′
5�uiu j e�i e� j + B ′′

6�u2 + B ′′
7�uiu j uke�i e� j e�k

(� = 19, . . . , 24), �� = �B

f eq0 = D0� + D6�u
2 (� = 0), �� = �D

where coefficients A′
�, A

′′
�, B

′
�, B

′′
� (�= 0, 2, 5, 6, 7), and D� (� = 0, 6) are determined by

a set of reasonable requirements. These requirements consist of the conservation laws of mass,
momentum, energy and the conditions of higher-order moment [31]

∑
�

f eq� = � (5)

∑
�

f eq� e� j = �u j (6)

∑
�

f eq� �� = 1

2
�u2 + �E (7)

�0i j ≡ ∑
�

f eq� e�i e� j = �uiu j + p�i j (8)

Q0
j ≡ ∑

�
f eq� e� j �� =

(
1

2
�u2 + �E + p

)
u j (9)

P0
i jk ≡ ∑

�
f eq� e�i e� j e�k = �uiu juk + puk�i j + p�iku j + p� jkui (10)

R0
jk ≡ ∑

�
f eq� e� j e�k��

= 1

2
�u2u juk + (2� − 1)�Eu juk + 1

2
(� − 1)�u2E� jk + (� − 1)��E2� jk (11)
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where p is the pressure of the perfect gas

p= (� − 1)�E (12)

� is the specific-heat ratio.

2.2. Coefficients in the equilibrium distribution

The form of the Navier–Stokes equation depends on few specific properties of the hexagonal lattice
model. The most important properties relate to the symmetries of the moments

T n
i1,...,in

=∑
�
e�i1 . . . e�in (13)

In this paper, moments T 1, . . . , T 6 are used, according to Reference [32], we get

T 2
i j = bc2

D
�i j (14)

T 4
ijkm = bc4

D(D + 2)
�4
ijkm (15)

where �4
ijkm = �i j�km + �ik� jm + �im� jk .

T 6
ijklmn = bc6

D(D + 2)(D + 4)
�6
i jklmn (16)

�6
ijklmn = �i j�klmn + �ik�jlmn + �il�jkmn + �im� jk ln + �in�jklm

+ � jk�ilmn + � jl�ikmn + � jm�ik ln + � jn�iklm + �kl�ijmn

+ �km�i j ln + �kn�ijlm + �lm�ijkn + �ln�ijkm + �mn�ijkl (17)

Therefore,

�ijklmn�ulumun = 18�uiu j uk + 9�u2uk�i j + 9�u2u j�ik + 9�u2ui� jk (18)

Substituting equilibrium distribution function into (5)–(11) and using the identity equations
(14)–(18), we obtain the system of linear equations for determining the following equation of
coefficients A′

�, A
′′
�, B

′
�, B

′′
� (�= 0, 2, 5, 6, 7), and D�(� = 0, 6)

b(A′
0 + A′′

0 + B ′
0 + B ′′

0 ) + D0 = 1 (19)

b

D
(A′

5c
2
1 + A′′

5c
2
2 + B ′

5c
2
1 + B ′′

5 c
2
2) + b(A′

6 + A′′
6 + B ′

6 + B ′′
6 ) + D6 = 0 (20)

b

D
(A′

2c
2
1 + A′′

2c
2
2 + B ′

2c
2
1 + B ′′

2 c
2
2) = 1 (21)

b

D(D + 2)
(A′

7c
4
1 + A′′

7c
4
2 + B ′

7c
4
1 + B ′′

7 c
4
2) = 0 (22)
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b(A′
0�A + A′′

0�A + B ′
0�B + B ′′

0 �B) + D0�D = E (23)

b

D
(A′

5�Ac
2
1 + A′′

5�Ac
2
2 + B ′

5�Bc
2
1 + B ′′

5 �Bc
2
2)

+ b(A′
6�A + A′′

6�A + B ′
6�B + B ′′

6 �B) + D6�D = 1

2
(24)

�b

D
(A′

0c
2
1 + A′′

0c
2
2 + B ′

0c
2
1 + B ′′

0 c
2
2) = p (25)

2b

D(D + 2)
(A′

5c
4
1 + A′′

5c
4
2 + B ′

5c
4
1 + B ′′

5 c
4
2) = 1 (26)

b

D
(A1

6c
2
1 + A′′

6c
2
2 + B1

6c
2
1 + B ′

6c
2
2) + b

D(D + 2)
(A′

5c
4
1 + A′′

5c
4
2 + B ′

5c
4
1 + B ′′

5 c
4
2) = 0 (27)

b

D
(A′

2�Ac
2
1 + A′′

2�Ac
2
2 + B ′

2�Bc
2
1 + B ′′

2 �Bc
2
2) = �E (28)

3b

D(D + 2)
(A′

7�Ac
4
1 + A′′

7�Ac
4
2 + B ′

7�Bc
4
1 + B ′′

7 �Bc
4
2) = 1

2
(29)

b

D(D + 2)
(A′

2c
4
1 + A′′

2c
4
2 + B ′

2c
4
1 + B ′′

2 c
4
2)

+ 9bu2

D(D + 2)(D + 4)
(A′

7c
6
1 + A′′

7c
6
2 + B ′

7c
6
1 + B ′′

7 c
6
2) = (� − 1)E (30)

18b

D(D + 2)(D + 4)
(A′

7c
6
1 + A′′

7c
6
2 + B ′

7c
6
1 + B ′′

7 c
6
2) = 1 (31)

b

D
(A′

0�Ac
2
1 + A′′

0�Ac
2
2 + B ′

0�Bc
2
1 + B ′′

0 �Bc
2
2) = �(� − 1)E2 (32)

2b

D(D + 2)
(A′

5�Ac
4
1 + A′′

5�Ac
4
2 + B ′

5�Bc
4
1 + B ′′

5 �Bc
4
2) = 1

2
u2 + (2� − 1)E (33)

b

D
(A′

6�Ac
2
1 + A′′

6�Ac
2
2 + B ′

6�Bc
2
1 + B ′′

6 �Bc
2
2)

+ b

D(D + 2)
(A′

5c
4
1�A + A′′

5c
4
2�A + B ′

5c
4
1�B + B ′′

5 c
4
2�B) = 1

2
(� − 1)E (34)

here, D (= 2) is the space dimension and b (= 6, for hexagonal lattice) is the link number per
site.

In order to obtain these coefficients in the equilibrium distribution, we have to propose some
man-made complementary conditions. We introduce the following assumptions:

A′
0�A + B ′

0�B = 4(A′′
0�A + B ′′

0 �B) = �(� − 1)E2D

2bc2
(35)
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A′
2�A + B ′

2�B = 4(A′′
2�A + B ′′

2 �B) = D�E

2bc2
(36)

A′
5 + B ′

5 = 16(A′′
5 + B ′′

5 ) = D(D + 2)

4bc4
(37)

A′
6 + B ′

6 = 4(A′′
6 + B ′′

6 ) =− D

4bc2
(38)

A′
6�A + B ′

6�B = 4(A′′
6�A + B ′′

6 �B) = −D(�E + 0.5u2)

4bc2
(39)

A′
7�A + B ′

7�B = 16(A′′
7�A + B ′′

7 �B) = D(D + 2)

12bc4
(40)

Thus, we have

A′
0 = 1

�A − �B

{
�(� − 1)E2D

2bc2
+ �B pD

3�bc2
− 4�B

3b
+ 4�B

3b�D

[
E − 5�(� − 1)E2D

8c2

]}
(41)

B ′
0 = 1

�A − �B

{
−�(� − 1)E2D

2bc2
− �A pD

3�bc2
+ 4�A

3b
− 4�A

3b�D

[
E − 5�(� − 1)E2D

8c2

]}
(42)

A′′
0 = 1

�A − �B

{
�(� − 1)E2D

8bc2
− �B pD

3�bc2
+ �B

3b
− �B

3b�D

[
E − 5�(� − 1)E2D

8c2

]}
(43)

B ′′
0 = 1

�A − �B

{
−�(� − 1)E2D

8bc2
+ �A pD

3�bc2
− �A

3b
+ �A

3b�D

[
E − 5�(� − 1)E2D

8c2

]}
(44)

D0 =
[
E − 5

c2
�(� − 1)E2D

]
1

�D
(45)

A′
2 = 1

�A − �B

{
D�E

2bc2
− 4D�B

3bc2
+ D(D + 2)�B

3bc4

[
(� − 1)E − 1

2
u2

]}
(46)

B ′
2 = 1

�A − �B

{
−D�E

2bc2
+ 4D�A

3bc2
− D(D + 2)�A

3bc4

[
(� − 1)E − 1

2
u2

]}
(47)

A′′
2 = 1

�A − �B

{
D�E

8bc2
− �BD(D + 2)

12bc4

[
(� − 1)E − 1

2
u2

]
+ D�B

12bc2

}
(48)

B ′′
2 = 1

�A − �B

{
−D�E

8bc2
+ �AD(D + 2)

12bc4

[
(� − 1)E − 1

2
u2

]
− D�A

12bc2

}
(49)

A′
5 = 1

�A − �B

{
2D

3bc2
+ 10D�D

12bc4
+ 5D2

12bc4

(
1

2
u2 + �E

)
− D(D + 2)

6bc4

[
1

2
u2 + (2� − 1)E

]

− �BD(D + 2)

4bc4

}
(50)
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B ′
5 = 1

�A − �B

{
− 2D

3bc2
− 10D�D

12bc4
− 5D2

12bc4

(
1

2
u2 + �E

)
+ D(D + 2)

6bc4

[
1

2
u2 + (2� − 1)E

]

+ �AD(D + 2)

4bc4

}
(51)

A′′
5 = 1

�A − �B

{
D(D + 2)

24bc4

[
1

2
u2 + (2� − 1)E

]
+ 1

12

[
− D

2bc2
− 10D�D

16bc4

− 5D2

16bc4

(
1

2
u2 + �E

)]
− �B

D(D + 2)

64bc4

}
(52)

B ′′
5 = 1

�A − �B

{
−D(D + 2)

24bc4

[
1

2
u2 + (2� − 1)E

]
− 1

12

[
− D

2bc2
− 10D�D

16bc4

− 5D2

16bc4

(
1

2
u2 + �E

)]
+ �A

D(D + 2)

64bc4

}
(53)

A′
6 = 1

�A − �B

{
− D

4bc2

(
�E + 1

2
u2

)
+ D�B

4bc2

}
(54)

B ′
6 = 1

�A − �B

{
D

4bc2

(
�E + 1

2
u2

)
− D�A

4bc2

}
(55)

A′′
6 = 1

�A − �B

{
− D

16bc2

(
1

2
u2 + �E

)
+ D�B

16bc2

}
(56)

B ′′
6 = 1

�A − �B

{
D

16bc2

(
1

2
u2 + �E

)
− D�A

16bc2

}
(57)

D6 = − 10

16c2
(58)

A′
7 = 1

�A − �B

[
D(D + 2)

12bc4
+ D(D + 2)(D + 4)�B

54bc6

]
(59)

B ′
7 = 1

�A − �B

[
−D(D + 2)

12bc4
− D(D + 2)(D + 4)�A

54bc6

]
(60)

A′′
7 = 1

�A − �B

[
D(D + 2)

192bc4
− D(D + 2)(D + 4)�B

864bc6

]
(61)

B ′′
7 = 1

�A − �B

[
−D(D + 2)

192bc4
+ D(D + 2)(D + 4)�A

864bc6

]
(62)
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2.3. Macroscopic equations

Using a small parameter k as the time step in numerical simulation, we take that it equals the
Knudsen number [6]. The lattice Boltzmann equation in physical unit is

f�(x + ke�, t + k) − f�(x, t) = −1

�
( f�(x, t) − f eq� (x, t)) (63)

The Chapman–Enskog expansion [33] is applied to f�(x, t) under the assumption that the small
Knudsen number

f� =
∞∑
n=0

kn f n� = f 0� + k f 1� + k2 f 2� + · · · + (64)

where f 0� denotes f eq� . We discuss changes in different time scales, introduced as t0, t1, . . . , thus,

t0 = t, t1 = kt, t2 = k2t, t3 = k3t, . . .

and

�
�t

= �
�t0

+ k
�

�t1
+ k2

�
�t2

+ k3
�

�t3
+ O(k2) (65)

Performing the Taylor expansion using Equation (63), and retaining terms up to O(k3), we
obtain a series of lattice Boltzmann equations in different time t0, t1, t2 scales [6]

� f eq�

�t0
+ e� j

� f eq�

�x j
= −1

�
f 1� (66)

� f eq�

�t1
+

(
1

2
− �

)(
�

�t0
+ e� j

�
�x j

)2

f eq� = −1

�
f 2� (67)

� f eq�

�t2
+ (1 − 2�)

(
�

�t0
+ e� j

�
�x j

)
� f eq�

�t1
+

(
�2 − � + 1

6

) (
�

�t0
+ e� j

�
�x j

)3

f eq�

= −1

�
f 3� (68)

We obtain the conversation laws in the first time scale t0 easily

��

�t0
+ ��u j

�x j
= 0 (69)

��ui
�t0

+ ��0i j
�x j

= 0 (70)

�( 12�u
2 + �E)

�t0
+ �Q0

j

�x j
= 0 (71)
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and the Navier–Stokes equations with the two-order accuracy

��

�t
+ ��u j

�x j
= O(k2) (72)

��ui
�t

+ ��0i j
�x j

= �
�xk

[
	

(
�ui
�xk

+ �uk
�xi

)
− 


�u j

�x j
�ik

]
+ O(k2) (73)

�( 12�u
2 + �E)

�t
+ �Q0

j

�x j
= �

�x j

[
�
�E
�x j

+ uk	

(
�uk
�x j

+ �u j

�xk

)
− uk


�um
�xm

� jk

]
+ O(k2) (74)

Figure 2. Comparison of exact solution and one-order LBM results of one-dimensional Sod’s
problem: (a)–(d) (solid lines are exact solutions, circles are LBM results): (a) density; (b) pressure;
(c) velocity; and (d) internal energy. Parameters: � = 1.4, c= 3.0, � = 1.51, �A = 2c2, �B = 0.6c2,

�D = 0.13c2, lattice size 200 × 4, time t = 100�t .
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where

	 = k(� − 1
2 )(� − 1)�E (75)


 = k(� − 1
2 )(� − 1)2�E (76)

� = k(� − 1
2 )�(� − 1)�E (77)

Figure 3. Comparison of exact solution and two-order LBM results of one-dimensional Sod’s
problem. (a)–(d) (solid lines are exact solutions, circles are LBM results): (a) density; (b) pressure;
(c) velocity; and (d) internal energy. Parameters: � = 1.4, c= 3.0, � = 1.51, �A = 2c2, �B = 0.6c2,

�D = 0.13c2, lattice size 200 × 4, time t = 100�t .
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3. NUMERICAL EXAMPLES

In this section, we apply the LBM to two gas flows. The first one is the typical Riemann problem,
namely the shock tube problem of Sod. The second one is a two-dimensional supersonic flow, 4
Mach number incoming flow around a circular cylinder.

3.1. One-dimensional Sod’s problem

In order to compute one-dimensional Sod’s problem using two-dimensional lattice, we change the
initial condition of the typical Sod’s problem [15] into the next form.

(�, u, p) = (2.0, 0.0, 2.0) if 0�x�0.5

(�, u, p) = (0.25, 0.0, 0.2) if 0.5 < x�1.0
(78)

We use 200 × 4 grids to simulate the one-dimensional Sod’s problem. We select the summation
of the second row and the third row as the shock tube, therefore, the density and pressure need to
be multiplied by 2.

The comparisons between one-order model and two-order model results are plotted in Figure 2
(for one-order model in Reference [15]) and Figure 3 (for two-order model in this paper). In
Figures 2 and 3, we plotted the comparisons between LBM and exact results apart. They show
that the two-order model (25-bit model in this paper) has higher accuracy and resolution than the
one-order model. They are: (1) the widths of the shock waves are about three to four cells less
than the corresponding one-order model; (2) the errors at contact discontinuities appearing in the
one-order model have been eliminated; (3) the non-physical oscillation in the front of shock wave
has weakened. Table I shows the L1 norm errors in our LBM and other schemes. We found that
the two-order model is more accurate than the one-order model.

Figure 2(a)–(d) displays the results of the density �, pressure p, velocity u and the internal
energy E calculated by using one-order LBM at the time t = 100�t . The boundary condition at
the two ends is the Dirichlet condition, at the upper (the fourth row) and under (the first row)
boundary condition is the Von Neumann condition. The internal energy E can be calculated by

Table I. The L1 norm errors of the Sod’s problem.

Density Velocity Pressure

The L1 norm errors of the Sod’s problem at t = 0.1644
LBM (25-bit) 0.00521 0.00852 0.00376
LBM (Reference [15]) 0.00804 0.01673 0.00792
LAX 0.01769 0.02814 0.01582
ORD 0.00578 0.00959 0.00460
ULT1 0.00437 0.00820 0.00362
STG2 0.00297 0.00494 0.00228
STGU 0.00291 0.00403 0.00216
STGC 0.00172 0.00278 0.00153
ULTC 0.00361 0.00804 0.00362
ROE 0.00836 0.01145 0.00666

These results are from Reference [34], except two LBM results. Lattice size: Nx = 200, t = 0.1644. The
underlined results indicate the smallest L1 norm errors in every column.
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Figure 4. Numerical result of 4 Mach number incoming flow around a circular cylinder: (a)
is the density contours; (b) is the pressure contours; (c) the stream lines; and (d) energy
�E contours. Parameters: � = 1.4, c= 3.0, � = 1.51, �A = 2c2, �B = 0.6c2, �D = 0.13c2, lattice

size 100 × 100, time t = 200�t , Ma= 4, Re= 1000, line numbers= 30.

E = p/�(� − 1). Figure 3(a)–(d) displays the results of the density �, pressure p, velocity u and
the internal energy E calculated by using two-order LBM at the time t = 100�t . The boundary
condition is the same as Figure 2.

3.2. Flow around a circular cylinder at Mach number 4 [35]
The solution domain [0, 1]×[0, 1] is divided into 100×100 uniform lattice. The circular cylinder is
a circle of radius 0.15 and centre at (0.5, 0.5). The initial conditions are � = 1.4, u = 4.0, v = 0.0,
and p= 1.0, thus, incoming Mach number is M∞ = 4, � = 1.4. The inlet, upper and bottom
conditions are the same as initial conditions. The downstream condition is the Von Neumann
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Table II. The L1 norm errors of the flows around a circular cylinder with 4 Mach number
incoming at line x = 0.25.

Density Velocity Pressure

The L1 norm errors at line x = 0.25.
LBM (25-bit) 0.0371 0.0352 0.00629
LBM (Reference [15]) 0.0874 0.0873 0.01254
FSEM (Reference [35]) 0.0136 0.0102 0.00277

Lattice size= 100 × 100, t = 200�t , Re= 1000.

condition, i.e. �F/�n = 0, where F denotes �, u, v, and p; n is the vector in the normal direction.
The surface of the circular cylinder is the viscous boundary condition, say, u = v = 0. In this
paper, this model possesses viscosity. From Equation (75), the Reynolds number is Re= �LU/	,
where L is the characteristic length (L = 1.0), U is the characteristic incoming velocity (U = 4.0),
therefore, we can select the relaxation factor to design the Reynolds number Re= 1000 with
E = p/(� − 1)�= 1.78571, � = 1

2 + LU/Re(� − 1)kE . In Figure 4, we plotted four pictures to
describe the shock waves at time 200�t . These are: (a) is the density contours; (b) is the pressure
contours; (c) is the stream lines; and (d) is the potential energy contours. It is easy to find shock
waves in figures. In order to compare these numerical results with other numerical results obtained
by other methods, we select the first-order lattice Boltzmann model in Reference [15] and the
finite spectral ENO method (FSEM) in Reference [35] as reference models. Table II shows the
L1 norm errors at line x = 0.25 in our lattice Boltzmann model and other schemes. We found this
two-order model is more accurate than the one-order model. We also found some large gradient
area oscillation in these contour lines. We found that one of the reasons is the poor accuracy of
the boundary treatments; we use the lattice to build the boundary of the circular cylinder. Because
this flow is supersonic flow, the boundary treatment does not disturb the shock waves. These
numerical results show that this second-order model is more accurate than the one-order model in
Reference [15].

4. CONCLUDING REMARKS

It is necessary to define total energy and internal energy for the recovery of energy equation. In some
papers [13–17], the defined total energy is the total kinetic energy of particles ET = ∑

f�c2/2,
which corresponds to �A = �B = 1

2 , �D = 0. This definition completely coincides with the physical
concepts of perfect gas, but in one or two-speed model it brings us two difficult problems: (i)
it leads to � = 2 (so-called Ideal Case [11]); (ii) the energy conservation can be derived from
momentum flux conditions. Using multi-speed model and introducing the concept of energy level,
we have solved these two problems. In our paper, all equations of perfect gas are successfully
included in the lattice Boltzmann model (LBM), and the ratio of specific heats appears as a chosen
parameter (so-called General Case).

In order to improve the accuracy of the model, we put an additional term �uiu juke�i e� j e�k
in the equilibrium distribution functions. In order to remove the term �2�uiu juk/�x j�xk , as an
essential step, the local equilibrium distribution must satisfy conservation conditions and conditions
of higher-order moment equations (5)–(11), thus, we have to use 25 distribution functions to meet
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these higher-order moment equations. In this paper, the Navier–Stokes equations with two-order
accuracy are obtained, especially the two-order accuracy energy equation is recovered by defining
the moment R0

i j .
There are some problems that need to be solved (1) the stability, numerical dissipation and

numerical dispersion to this model, and relations between these numerical phenomena and those
parameters need to be solved; (2) the superior limit of the Mach numbers the model can simulate
need to be known; (3) we need to study the viscosity and heat transfer phenomena to determine
their correctness; (4) some more details on numerical simulations for the boundary condition on the
wall, dissymmetrical flows, and flows with higher Mach numbers. We will discuss these problems
in further papers.

Finally, we point out that an important problem needs to be solved that is whether to construct
higher-order accuracy LBM for the Euler equations or the Navier–Stokes equations.

ACKNOWLEDGEMENTS

This work is supported by 985 Project of Jilin University, the National Nature Science Foundation of
China (Grant No. 10072023, Grant No. 90305013), and the Chuangxin Foundation of Jilin University
(No. 2004CX041). We would like to thank Prof. Qian Yuehong, Prof. Wang Jianping and Dr Yang Hua
for their many helpful suggestions.

REFERENCES

1. Frisch U, Hasslacher B, Pomeau Y. Lattice gas automata for the Navier–Stokes equations. Physical Review
Letters 1986; 56:1505–1508.

2. Chen SY, Doolen GD. Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics 1998;
3:314–322.

3. Qian YH, d’Humieres D, Lallemand P. Lattice BGK model for Navier–Stokes equations. Europhysics Letters
1992; 17(6):479–484.

4. Chen HD, Chen SY, Matthaeus MH. Recovery of the Navier–Stokes equations using a Lattice Boltzmann gas
method. Physical Review A 1992; 45:5339–5342.

5. Benzi R, Succi S, Vergassola M. The Lattice Boltzmann equations: theory and applications. Physics Reports
1992; 222:147–197.

6. Yan GW. A lattice Boltzmann equation for waves. Journal of Computational Physics 2000; 161:61–69.
7. Yan GW, Song M. Recovery of the solitons using a lattice Boltzmann model. Chinese Physics Letters 1999;

16:109–110.
8. Yan GW, Yuan L. Lattice Bhatnagar–Gross–Krook model for the Lorenz attractor. Physica D 2001; 154:43–50.
9. Versteeg HK, Malalasekera W. An introduction to computational fluid dynamics—the finite volume method.

Longman: New York, 1995.
10. Harten A. On a class of high resolution total variation stable finite difference schemes. SIAM Journal on

Numerical Analysis 1984; 21:1–23.
11. Harten A, Engquist B, Osher S, Chakravathy R. Uniformly high order accurate essentially non-oscillatory schemes,

III. Journal of Computational Physics 1997; 131:3–47.
12. Zhang LT, Wagner GJ, Liu WK. A parallelized meshfree method with boundary enrichment for large-scale CFD.

Journal of Computational Physics 2002; 176:483–506.
13. Sethian JA. Theory, algorithms, and applications of level set methods for propagating interface. Acta Numerica.

Cambridge University Press: Cambridge, U.K., 1995.
14. Woodward P, Colella P. The numerical simulations of two-dimensional fluid flow with strong shocks. Journal of

Computational Physics 1984; 54:115–174.
15. Yan GW, Chen YS, Hu SX. Simple lattice Boltzmann model for simulating flows with shock wave. Physical

Review E 1999; 59:454–459.
16. Alexander FJ, Chen H, Chen S et al. Lattice Boltzmann model for compressible fluids. Physical Review A 1992;

46:1967–1970.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 55:41–56
DOI: 10.1002/fld



56 G. YAN ET AL.

17. Nadiga BT. An Euler solver based on locally adaptive discrete velocities. Journal of Statistical Physics 1995;
81:129–146.

18. Huang J, Xu F, Vallieres M et al. A thermal LBGK model for large density and temperature difference.
International Journal of Modern Physics C 1997; 8:827–841.

19. Prendergast KH, Xu K. Numerical hydrodynamics from gas-kinetic theory. Journal of Computational Physics
1993; 109:53–66.

20. Kim C, Xu K, Martinelli L et al. Analysis and implementation of the gas kinetic BGK scheme for computing
inhomogeneous fluid behavior. International Journal for Numerical Methods in Fluids 1997; 25:21–49.

21. Kotelnikov AD, Montgomery DC. A kinetic method for computing inhomogeneous fluid behavior. Journal of
Computational Physics 1997; 134:364–388.

22. Renda A, Bella G, Succi S et al. Thermo hydrodynamics lattice BGK schemes with non-perturbative equilibrium.
Europhysics Letters 1998; 41:279–283.

23. Vahala G, Pavlo P, Vahala L et al. Thermal lattice Boltzmann models (TLBM) for compressible flows. International
Journal of Modern Physics C 1998; 9:1247–1261.

24. Sun CH. Lattice–Boltzmann model for high speed flows. Physical Review E 1998; 58:7283–7287.
25. De Cicco M, Succi S, Balla G. Nonlinear stability of compressible thermal lattice BGK model. SIAM Journal

on Scientific Computing 1999; 21:366–377.
26. Mason RJ. A compressible lattice Boltzmann model. Bulletin of the American Physical Society 2000; 45:168–170.
27. Mason RJ. A multi-speed compressible lattice Boltzmann model. Journal of Statistical Physics 2002; 107:385–400.
28. Yan GW, Dong YF, Liu YH. An implicit Lagrangian lattice Boltzmann method for the compressible flows.

International Journal for Numerical Methods in Fluids 2006; 51(12):1407–1418.
29. Kataoka T, Tsutahara M. Lattice Boltzmann method for the compressible Euler equations. Physial Review E

2004; 69(5):056702.
30. Kataoka T, Tsutahara M. Lattice Boltzmann method for the compressible Navier–Stokes equations with flexible

specific-heat ratio. Physical Review E 2004; 69(3):035701.
31. McNamara G, Garcia L, Alder B. Stabilization of thermal lattice Boltzmann models. Journal of Statistical Physics

1995; 81:395–408.
32. Wolfram S. Cellular automaton fluids 1: Basic theory. Journal of Statistical Physics 1986; 45(3/4):471–518.
33. Chapman S, Cowling TG. The Mathematical Theory of Non-uniform Gas. Cambridge University Press: Cambridge,

1939.
34. Nessyahu H, Tadmor E. Non-oscillatory central differencing for hyperbolic conservation laws. Journal of

Computational Physics 1990; 87:408–419.
35. Wang JP, Qiu QH, Ogawa S. Numerical simulation of viscous supersonic flows by finite spectral ENO method.

Computational Fluid Dynamics Journal 2004; 12:191–197.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 55:41–56
DOI: 10.1002/fld


